skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ning, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. This paper proposes SEER, a novel backdoor detection algorithm for vision-language models, addressing the gap in the literature on multi-modal backdoor detection. While backdoor detection in single-modal models has been well studied, the investigation of such defenses in multi-modal models remains limited. Existing backdoor defense mechanisms cannot be directly applied to multi-modal settings due to their increased complexity and search space explosion. In this paper, we propose to detect backdoors in vision-language models by jointly searching image triggers and malicious target texts in feature space shared by vision and language modalities. Our extensive experiments demonstrate that SEER can achieve over 92% detection rate on backdoor detection in vision-language models in various settings without accessing training data or knowledge of downstream tasks. 
    more » « less
  3. We report a new neural backdoor attack, named Hibernated Backdoor, which is stealthy, aggressive and devastating. The backdoor is planted in a hibernated mode to avoid being detected. Once deployed and fine-tuned on end-devices, the hibernated backdoor turns into the active state that can be exploited by the attacker. To the best of our knowledge, this is the first hibernated neural backdoor attack. It is achieved by maximizing the mutual information (MI) between the gradients of regular and malicious data on the model. We introduce a practical algorithm to achieve MI maximization to effectively plant the hibernated backdoor. To evade adaptive defenses, we further develop a targeted hibernated backdoor, which can only be activated by specific data samples and thus achieves a higher degree of stealthiness. We show the hibernated backdoor is robust and cannot be removed by existing backdoor removal schemes. It has been fully tested on four datasets with two neural network architectures, compared to five existing backdoor attacks, and evaluated using seven backdoor detection schemes. The experiments demonstrate the effectiveness of the hibernated backdoor attack under various settings. 
    more » « less
  4. Existing adversarial algorithms for Deep Reinforcement Learning (DRL) have largely focused on identifying an optimal time to attack a DRL agent. However, little work has been explored in injecting efficient adversarial perturbations in DRL environments. We propose a suite of novel DRL adversarial attacks, called ACADIA, representing AttaCks Against Deep reInforcement leArning. ACADIA provides a set of efficient and robust perturbation-based adversarial attacks to disturb the DRL agent's decision-making based on novel combinations of techniques utilizing momentum, ADAM optimizer (i.e., Root Mean Square Propagation, or RMSProp), and initial randomization. These kinds of DRL attacks with novel integration of such techniques have not been studied in the existing Deep Neural Networks (DNNs) and DRL research. We consider two well-known DRL algorithms, Deep-Q Learning Network (DQN) and Proximal Policy Optimization (PPO), under Atari games and MuJoCo where both targeted and non-targeted attacks are considered with or without the state-of-the-art defenses in DRL (i.e., RADIAL and ATLA). Our results demonstrate that the proposed ACADIA outperforms existing gradient-based counterparts under a wide range of experimental settings. ACADIA is nine times faster than the state-of-the-art Carlini & Wagner (CW) method with better performance under defenses of DRL. 
    more » « less
  5. Abstract Electrochemical two-electron water oxidation reaction (2e-WOR) has drawn significant attention as a promising process to achieve the continuous on-site production of hydrogen peroxide (H2O2). However, compared to the cathodic H2O2generation, the anodic 2e-WOR is more challenging to establish catalysts due to the severe oxidizing environment. In this study, we combine density functional theory (DFT) calculations with experiments to discover a stable and efficient perovskite catalyst for the anodic 2e-WOR. Our theoretical screening efforts identify LaAlO3perovskite as a stable, active, and selective candidate for catalyzing 2e-WOR. Our experimental results verify that LaAlO3achieves an overpotential of 510 mV at 10 mA cm−2in 4 M K2CO3/KHCO3, lower than those of many reported metal oxide catalysts. In addition, LaAlO3maintains a stable H2O2Faradaic efficiency with only a 3% decrease after 3 h at 2.7 V vs. RHE. This computation-experiment synergistic approach introduces another effective direction to discover promising catalysts for the harsh anodic 2e-WOR towards H2O2
    more » « less